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Systems”) /Staff: S.G. Dzhura, S.V. Shlepnyov, V.V. Yakimishina.  

The theoretical data on the computational mathematics methods applied to 

engineering tasks solving in electrical and power engineering is presented. The 

task and methodical recommendations to do 16 laboratory works to train students 

on the methods of computer solving of linear and non-linear equations and their 

systems, differential equations, methods of numerical integration, function 

approximation, extreme value search are given.    
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INTRODUCTION 

 

One of the main current trends of the science and technical advance is the 

development of methods and means of the information science and computing.   

The application of the mathematical methods of engineering task computer 

solving raises the efficiency of design, parameter computation, research, analysis 

and synthesis of different technical systems, including those of power supply.  As 

to the mathematics, many energy and electrical engineering tasks add up to solving 

of algebraic, transcendental and differential equations and their systems, matrix, 

vector and set  operations, table function approximation, functional minimization 

etc. These tasks can’t always be solved analytically and require numerical method 

application.   

This workbook has tasks and methodical recommendations to the laboratory 

works necessary to gain the skills of algorithmization, programming, and computer 

tasks solving with the help of the computational mathematics methods.  

The tasks provided in the workbook can be replaced by the analogous ones 

from the parallel disciplines or coordinated with the SRW topics. This as well as 

the programming language is to be approved by a teacher.  

 

 

Laboratory Work 1 

 

COMPUTING OF POLYNOMIAL VALUE ACCORDING TO THE 

HORNER’S METHOD 
Purpose of the work: to learn to compute the polynomial values in the most 

economical way, to gain the programming skills with the application of the user’s 

functions and sub-programmes. 

 

1.1 Theoretical Data   

 

There is the necessity to compute the functions which look like a polynomial 

when automated control systems are analyzed and synthesized as well as in the 

electric circuit theory: 
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Where n – polynomial degree;  

            A


=(а0, а1, …, аn)-  coefficient vector,  

             х – independent variable . 

The polynomial (1.1) can be converted into:  

                       Pn(x)=(…((( а 0x+ а 1)x+ а 2)x+ а 3)x+…+ а n) .                       

(1.2) 



The computing algorithm Pn(x), formed on the basis of the phrase (1.2) is 

called the Horner’s method.  

According to this method the polynomial of the i-order is stated through the 

polynomial of the (і-1)-order according to the formula  

                                                   Pi=Pi-1x+ а i.                                              

(1.3) 

 

Taking P0=а0 and doing the operation (1.3) n times under і=1,2,...,n, the 

necessary value is obtained. 

 The Horner’s method is proved to be the most economical algorithm for the 

general form polynomials as to the number of operations (n additions and n 

multiplications). 

 

1.2 Tasks   

 

Compute the value of the variable z under x which changes from -1 to + 1 

with the step 0.1. The phrases for z computing are given in the table 1.1. In these 

phrases the functions f1(x), f2(x) і f3(x) are polynomials which differ from each 

other by the coefficient order and value 

 

For odd variants:  

f1(x)=1.07x
5
-12x

4
-2.8x

3
+6.3x

2
+3.7x+4, 

f2(x)=10.1x
7
+37x

5
-15x

4
+8.2x+5.4, 

f3(x)=-23x
3
+13.6x

2
+0.5x-1.2. 

 

For mating variants:  

f1(x)=8.16x
4
+14x

3
+0.9x

2
+3.8x-2, 

f2(x)=19.7x
6
+11.4x

4
+2.3x

3
-1.8x+0.9, 

f3(x)=21.6x
5
-17.4x

4
+8.7x

3
+11x. 

 

Make up the sub-programme (procedure) to work in the polynomial 

coefficient value, and the user’s function to compute these polynomials.  

 

 

 

 

 

Table 1.1 – Output data for the laboratory work №1 



 

Variant Phrase to compute the variable  

1 2 
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    xfxf

xf
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2
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3
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Continuation of the table 1.1 

1 2 

19,20 

))x(f)x(f(

)e(f)e(f xx

32

21

2 


 

21,22 

)x(cosf)x(sinf

)x(f

2
3

2
1

2


 

23,24 )x(f)e(f)x(sinf x 223
2

1  

25,26 

12

2

3

2
1




)x(f

)
x

(f

e
)x(f

 

 

 

          1.3 Methodical Recommendations   

 

If the programme is made up in the Pascal language, the coefficient mass for 

the functions f1(x), f2(x) і f3(x) in the programme and the coefficient mass to 

compute the value of the polynomial Pn(x) in the user’s function have to be of the 

same type described in the main module. For example:  

 

const     nmax=6; 

type       vector=array[1..nmax] of real, 

 

  where nmax – polynomial maximum order  

It’s better to mark the above-listed masses by different identifiers. 

 

  

Laboratory Work   2 

 

PRIMITIVE OPERATIONS WITH MATRICES  

 

  Purpose of the work: to learn to compute the matrix sum, difference, and 

scalar product, to transpose them and define the matrix norm.   



 

2.1 Theoretical data   

 

Matrices and vectors are often used in electrical computation (a vector is a 

matrix-line or a matrix-column). Examine the primitive operations with matrices: 

sum, difference, multiplication, transposition, some norm computing. The more 

complicated operation will be examined later.   

 

2.1.1 Sum and difference of two matrices  

   

The sum of two matrices of the same size  

A+B=[ а i,j]+[bi,j]    (i=1,2,…,m; j=1,2,…,n) 

 

Is the matrix C= [Ci,j]  of the same size the elements of which are equal to the 

sums of the corresponding elements of the matrices A and B : 

                                                       Cij= а ij+bij.                                                

(2.1) 

 

The difference of the matrices is computed similar to the sum, but the 

elements of the matrix which is deducted have the opposite sign, that is the 

elements of the matrix С=В-А are computed according to the formula  

Cij= а ij-bij                                                                        (2.2) 

(i=1,2,…,m;   j=1,2,…,n). 

 

2.1.2 The matrix scalar products and their exponentiation  

 

The scalar product of the matrix A of the size mk to the matrix В of the size  

kn  is the matrix C of the size mn  the elements of which are computed 

according to the formula: 





k

l

jlilkjikjijiij babababaC
1

2211 ...                                    (2.3) 

It should be mentioned that the matrix С=АВ is defined only when the 

number of the columns of the matrix A is equal to the number of the lines in the 

matrix B.  

For the matrix scalar product the commutative law is not applied, that is 

АВ≠ВА. 

The multiplication of the matrix A with the size mk by the vector-column  

B


 which consists of k elements, and the vector-line A which consists of k elements 

by the matrix В with the size kn. mk is the special case of matrix multiplication.    



 

In the first case the result will be the vector –column with the elements  

         



k

j

jijkikiii babababaC
1

2211 ...                                         (2.4) 

(і=1, 2,..., m) , and in the second case – the vector- line with the elements  

       



k

i

ijikjkjjj babababaC
1

2211 ... .                                      (2.5) 

According to the term the matrix scalar product only the square matrix can be 

exponentiated into the integral positive rate: 

А
k
=((АА)А)…А)                                              (2.6) 

k- factors  

2.1.3  Matrix Transposition  

 

If to replace the lines of the matrix A with the size mn by the corresponding 

columns, we will get the matrix А T with the size nm which is called the 

transposed one relative to the matrix A.    

 

Thus, 

а ij
T
= а ji 

(i=1,2,…,n; j=1,2,…,m). 

 

2.1.4 Matrix Norms  

 

The norm of the matrix A=[aij]  is the real number ||A|| which meets the 

following requirements:  

        -    ||A||≥0    (and  ||A=0|| only when  А=[0]), 

- ||A||=||*||A||, where   - the real number  (and ||-A||=||A||), 

- ||A||+||B||≥||A+B||, 

- ||AB||||A||*||B||, 

- ||A-B||≥|||B||-||A|||. 

 

The following three norms are considered the easiest to compute : 

 


j

ij
i

amaxA
1

                                                   (2.7) 



The maximum sum of the matrix element modules in the lines;  

   
i

ij
j

amaxA
2

                                               (2.8) 

 

The maximum sum of the matrix element modules in the columns;  

  
ij

ijaA
2

3
                                              (2.9) 

  

Square root of the sum of the squares of the modules of all matrix elements.  

 

2.2 Tasks   

 

Do the operations with matrices according to the phrases given in the table 

2.1. The repeated actions should be presented as separate procedures: 



















1

10.7

3.1

   

7

4.5

2

A  ,  









2  4  5  

7.1115.7
B ,   



















6

8

0

  

5

7

1

C ,   









89

54.7
D . 

Table 2.1 

Number 

of the 

variant  

Tasks   

1 2 

 

1 

Check the correlations:: 

||A+C||1 ||A||1+||C||1 

2 ||A*B||1 ||A||1*||B||1 

3 ||A-C||1 | ||C||1-||A||1 | 

4 ||A+C||2||A||2+||C||2 

5 ||A*B||2||A||2*||B||2 

6 ||A-C||2 | ||C||2-||A||2 | 

7 ||A+C||3||A||3+||C||3 

8 ||A*B||3||A||3*||B||3 

The continuation of the table 2.1 



1 2 

9 ||A-C||3 | ||C||3-||A||3 | 

 

10 

Compute: 

K=A+C+B
T
 

11 K=B(A+C)+D 

12 K=(A-C)*(D*B) 

13 K=B
T
-A-C 

14 K=B*A*B 

15 L=||A+C||1+||B||1 

       16 L=||A||1+||B||2+||C||1 

17 K=C*D+A+C 

18 K=B*C*D 

19 

 

||A||1     ||A
T
||1  ||B||1    ||B

T
||1 

20 K=D*C
T
*A 

21 K=D-B*C-B*A 

22 K=A
T
+C

T
+B 

23 K=(A-C)*B 

24 K=C*D-A-C 

 

 

Laboratory Work 3 

 
SOLUTION OF THE SYSTEMS OF LINEAR EQUATIONS WITH REAL 

COEFFICIENTS  

 

Purpose of the work: to learn to compute the roots of the systems of linear 

equations with real coefficients.  

 

3.1 Theoretical Data  



 

The solution of the systems of linear equations is used in electrical 

engineering and related to it disciplines when the static modes of the branched 

electric circuits are computed.  

The system of the linear equations n with the unknown  n looks like:  



















.bxa...xaxa

..........................................

,bxa...xaxa

,bxa...xaxa

nnnnnn

nn

nn

2211

22222121

11212111

                                          (3.1) 

 

It can be put down in the matrix form:  

 

                                                   ,BХ*A                                                         

(3.2)        

 Where      























nnnn

n

n

a...aa

............

a...aa

a...aa

A

21

22221

11211

  -  coefficient square matrix ; 

 























nb

...

b

b

B
2

1


    -  absolute term vector;  

 























nx

...

x

x

Х
2

1

   -  root required vector.. 

 

The ways of solution of the systems of linear equations are divided into two 

groups: 

- accurate methods ( coefficient matrix inversion, Cramer’s law, Gaussian 

method etc.); 

- iteration methods (Newton’s, Seidel’s, simple iterations etc.).  

 

If the matrix A is not special, that is its determinant is not equal to zero, the 

system has the single solution:  



 

,B*AX 1                                                                     (3.3) 

 

Where       1A  - matrix inverse to the matrix  А. 

 

Computing of the roots according to the formula (3.3) is called the 

coefficient matrix inversion method.   

According to the Cramer’s law the roots are computed according to the 

formulae :  

,x,........,x,x n
n














   2

2
1

1  

 

Where       -   determinant of the matrix А; 

        i - determinant of the matrices obtained from the matrix A  by the 

replacement of its i-column by the vector of the free terms B.  

Both of above-mentioned methods are used only when the systems of the 

equations of not high order are solved by hand. If n>3 these methods are too 

labour-consuming and not economical. 

As to the accurate methods, that of Gaussian is the most widely spread.  

It can be divided into two stages:  

- the forward trace, that is gradual reduction of roots from 1
st
 to n and 

transformation of the coefficient matrix to the rectangular;  

- return trace that is gradual reduction of roots from 1
st
 to n out of the 

transformed equation system.. 

The reduction of the k root (k=1, 2,..., n-1) out of the i-equation (і=k+1, 

k+2,..., n) is done by the replacement of all the coefficients of the i-equation by the 

difference between former coefficients of this equation and the corresponding 

coefficients of the i-equation multiplied by the measurement factor:  

                                                               

kk

ik

a

a
р  .                                                    (3.4) 

 

        As a result the coefficients of the i-equation have the following values:  

а ik=0,                                                               (3.5) 

а ij=а ij-p а kj       (j=k+1,k+2,…,n),                                       (3.6) 

bi=bi-pbk.                                                           (3.7) 

 

The mark  "=" in the formulae (3.6) and (3.7) is used as the symbol of the 

assignment operation, with the former values of the coefficients  aij and bi used in 

the right-hand part , and the new ones – in the left-hand part.  



When the minimal error roots are reduced the rounding off under the 

coefficient re-computation can be obtained by the replacement of the equations in 

such a way that the modules of the coefficients kka  with the reduced roots    хk are 

maximum possible. This stage of the Gaussian method is called the choice of the 

main element. .  

According to above-mentioned the scheme of the algorithm of the forward 

trace can be as presented in the fig. 3.1. 

As a result of the forward trace the system of the equations (3.1) is 

transformed into: 

         



















.bxa

..........................................

,bxa...xa

,bxa...xaxa

nnnn

nn

nn

22222

11212111

                              (3.8) 

 

 

The coefficients а ij and bi of the system (3.8) don’t coincide with the 

corresponding coefficients of the output system (3.1). 

 

The roots of the transformed system can be computed according to the 

formulae: 

 

                                                       
nn

n
n

a

b
x  ,                                                 (3.9) 

                                          ).,...,n,ni(
a

xab

x
ii

n

ij
jiji

i 1 2 1
1








                     

(3.10) 

 

The return trace scheme can be as presented in the fig. 3.2.   

 

The forward trace algorithm can be reduced if the square matrix of the 

coefficients Anxn and the vector-column of the free terms В  are combined into the 

single matrix ARnx(n+1),   which is called the coefficient augmented matrix, and in 

which the elements of the vector В  make up the (n+1)-column:  

 










.1

,

njприb

njприa
ar

i

ij

ij                              (3.11) 

 



In this case the blocks 9 and 13 will disappear from the scheme, and the 

parameter j (number of the column) of the blocks 7 and 14 will change not to n, but 

to n+ 1.The variables nb і ib  of the blocks 1 and 6 (fig. 3.2) should be changed into 

the variables 1n,na  і 1n,ia  correspondingly.    

 

 

 

 

3 Tasks  

.  

          Compute current and tension of the electric circuit branches given in the fig. 

3.3 with the help of the Kirchhoff laws. The scheme parameters are given in the 

table 3.1. Test the results.   

 

3.3 methodical Recommendations   

 

If the Pascal programming language is used: it is more convenient to have 

the equation system root determination in the form of the programme (procedure) 

with the formal parameters n, A, B and X, with the massive X being described as 

the parameter-variable (var.  being the key-word). If the augmented coefficient 

matrix is used, n, A and Х. are the procedure formal parameters.   

To describe the massive types in the part of constants the massive maximum 

permissible sizes should be identified.  . 

For the Gaussian method programme to be universal there should not be the 

process of the output data input and the result output in it. 

Theу main programme module should have the output data input, forming of 

the actual parameters for the Gaussian method sub-programme, this sub-

programme call, the result output, the solution verification.  

 

To verify the values of the functions can be computed and displayed.  

fi=a i1x1+ a i2x2+…+a inxn-bi                               (3.12) 

(i=1, 2,…, n). 

If the solution is correct these values are near-zero  

The matrix output and the result test can be arranged as separate sub- 

programmes. 

  

Table 3.1 Scheme Parametres  

Number 

of the 

Variant  

В В В В В В Ом Ом Ом Ом Ом Ом 

1-6 130 500 120 240 170 380 21 14 13 16 9 20 



7-12 360 190 210 130 450 170 8 9 16 13 21 12 

13-18 120 220 340 80 510 160 5 18 12 14 7 28 

19-24 280 540 310 160 90 360 12 6 24 10 14 18 

25-31 340 110 280 210 130 260 27 30 4 6 22 11 

 

 

 

 

 

 

 
                                                                                                                    P=aik /akk 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

1 

k 

1n-1 

BEGINNING 

END im=k 

i 

k+1n 

 im=i 

| а i,k|>| а im,k| 

imk 

j 

1n 

v= a im,j 

a im,j= a k,j 

a k,j=v 

v=bim 

bim=bk 

bk=v 

i 

k+1n 

a i,j= a i,j- pa k,j 

bi=bi-pbk 

a i,k=0 

j 

k+1n 

1 

1 

11  

10 

13 

12  

15  

14  
5  

4 

3 

2 

1  

6 

9 

7  

8  

no 

  yes 

no 

yes 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 – Gaussian Method Forward Trace  



 

Figure  3.2 – Gaussian Method Return Trace  
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Figure 3.3 – Schemes for the Task 3.2 
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Laboratory Work   4 

 

SOLUTION OF THE LINEAR EQUATION SYSTEMS WITH THE 

COMPLEX COEFFICIENTS 

 

Purpose of the work: to learn to compute static modes in the branched 

electric circuits. 

 

         4.1 Theoretical Data   

          

If there are resistor, dc sources, resistance coils, capacitors and ac sources in 

the electric circuit, to compute current and tension in constant modes the equation 

systems with the complex coefficients are solved. If the element static 

characteristic nonlinearity is not taken into account, the algebraic equation linear 

system is obtained. To solve it all methods mentioned in the previous laboratory 

work, including the Gaussian method, are applied.   

The specificity of the solution is in fact that we operate with the complex 

numbers rather than with real ones. Such algorithmic languages as FORTRAN and 

PL-1 have the complex type data and operate with it as easily as with the real type 

arithmetic data. 

When the Pascal language is used the programmer has to make up the sub-

programme to do the operations with the complex numbers. It can be done much 

easier due to the possibility to create the types identified by the user, and the 

presence of the formal and actual parameter device in the sub-programmes. For 

example, in the Pascal programme description part the data complex type can be 

defined as the record which consists of two parts: real (re) and imaginary  

 

type complex = record 

re, іm: real 

end; 

 

Then a number of sub-programmes and functions to work with the complex 

numbers are made up. For example, the sub-programme of multiplication of two 

complex numbers X=X re +jX im   і Y=Y re +jY im  can be as follows:  

 

procedure MultС(x,y:complex; var z:complex); 

begіn 

    z.re:=x.re*y.re-x.іm*y.іm; 

    z.іm:=x.re*y.іm+x.іm*y.re; 

end; 

 

 



If such a programme is available to compute the value of the variable  

 

W=(3,6-j8)(5+j2,1) 

 

It is enough to record the operator sequence in any programming module for which 

the MultC procedure is available:  

  

wіth а  do 

   begіn re:= 3.6; іm:= -8 end; 

wіth b do 

   begіn re:= 5; іm:= 2.1 end; 

MultC ( а ,b,w); 

The variables а ,b,w are preliminary described as the complex type data:  

 

var a,b,w:complex. 

 

Table 4.1- Scheme Parametres  

Number 

of the 

Variant 

Гн мкФ В В Ом Ом Ом 

1-6 0,05 170 360 200 18 10 27 

7-12 0,08 150 400 250 30 13 20 

13-18 0,07 270 200 320 18 21 32 

19-24 0,09 130 220 440 28 20 16 

25-31 0,06 180 320 240 25 16 34 

 

4.2 Task 

 

Compute constant current of the electric circuit branches given in the fig. 

4.1, making up the equation system with the Kirchhoff laws. The scheme 

parameters are given in the table 4.1. Verify the results.   

 

4.3 Methodical Recommendations   

 

To do the work, use the recommendations and algorithm schemes given in 

the previous work. Replace the complex coefficient operations by the call of the 

corresponding sub-programmes (procedures) or functions.   

The following procedures and functions should be added: 

    - input and output of the values of complex variables or their arrays,  

    - multiplication, division, adding of two complex numbers,  

    - complex number sign change, 

    - complex number module computing function.  

 



 

Рисунок 4.1 – Scheme variants  

 

Laboratory Work 5 

 

MATRIX INVERSION  

 

Purpose of the work: to learn to compute the inverse matrix with respect to 

the given one  

 

5.1 Theoretical Data 
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The matrix inversion is widely used when the branched electric circuits are 

computed in the form of matrix by different methods.   

The matrix  

 

Xnxn=A
-1

nxn,                                                        (5.1) 

 

Is called the inverse with respect to the output square matrix which being 

multiplied by the output one gives the identity diagonal matrix Enxn: 

 

                             Anxn*A
-1

nxn=Enxn,                                                 (5.2) 

 

Or in the expanded form  
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For the small size matrices (n3) the inversion is made by hand with the 

application of the formula  

,

~
1




TA
A                                               (5.4) 

Where A - the union matrix (the matrix composed of the algebraic 

complements); 

        - determinant . 

 With n>3 the computations according to the formula (5.4) become very 

cumbersome. 

As it is vivid from (5.3), the elements of the КС column of the inverse 

matrix X can be determined by the solution of the system of linear equations n with 

the n unknowns.  
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Where           









,KCiпри

,KCiпри
e KC,i

1

0
                                                               

(5.6) 

 

                                            КС=1, 2, ..., n. 



Thus, to determine all the elements of the inverse matrix n equation systems 

should be solved.  

This approach is used in machine computations. The equation systems can 

be solved by any of the known methods, by the Gaussian one, for example.  

If there is the equation system solution sub-programme, the matrix inversion 

algorithm can be represented by the scheme (fig. 5.1).  

If there is no equation system solution sub-programme, the forward trace of 

the Gaussian method is done once with the expanded matrix A composed of the 

output matrix AІ and the identity square matrix Е joined to it on the left: 
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or 

,випадках

,inj

,nj

іншихв

при

приai

a

ij

ij 













 0

1                               

(5.8) 

 

                                                        і=1, 2, ..., n, 

                                                        j=1, 2, ..., 2n. 

 

In the forward trace scheme as compared to the algorithm of the fig. 5.1, 

there are no blocks 9 and 13, and in the blocks 7 and 14 the final value of the 

variable j is equal to 2n. 

The return trace is done n times (with КС=1, 2,..., n). Along with it the 

elements of the vector of the roots  xn, xj i xi in the scheme of the fig. 3.2 are 

replaced by the elements of the inverse matrix    xn, KC хj.KC і 

 xi, KC, and variables  bn і bi – by the variables а n, n+КС і а i,n+КС  

correspondingly. 

 

5.2 Task  

 

Do the inversion of free square matrices of the second, third, and fourth order 

with the result verification.  

 

 5.3 Methodical Recommendations   

 

   Input, output, matrix inversion, and the result verification should be 

arranged as separate procedure blocks. 



To verify the solution correctness, display the output matrix scalar product 

and the obtained inverse matrix. If the identity diagonal matrix (see the equation 

(5.3)) is obtained, the solution is correct.      
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MATRIX DETERMINANT COMPUTATION  

 

Purpose of work: to learn to compute the matrix determinants.    

 

6.1 Theoretical Data  

 

beginning
  
 

n, A 
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To compute the determinant the output matrix is transformed into the 

triangular with the help of the Gaussian method forward trace, and its diagonal 

element product is computed. 

If the disarray is used in the forward trace scheme, the fact that one 

replacement of the kind changes the determinant sign into the opposite one is taken 

into account.   

 

6.2 Task   

 

Solve the equation system given in the table 6.1 by the Kramer method. 

Verify the results. 

 

Table 6.1- Output data  

Number of 

the Variant  
Equation System  

1 2 

1,2 3.14 x1-2.2x2+1.17x3=1.27 

-2.12x1+1.32x2-2.45x3=2.13 

1.17x1-2.45x2+1.18x3=3.14 

3,4 2.45x1+1.75x2 –3.24x3=1.23 

1.75x1-1.16x2 +2.18x3=3.43 

-3.24x1+2.18x2 –1.85x3=-0.16 

5,6 

 

1.65x1-2.27x2 +0.18x3=2.25 

-2.27x1+1.73x2 –0.46x3=0.93 

0.18 x1-0.46x2 +2.16x3=1.33 

7,8 3.23x1+1.62x2 +0.65x3=1.28 

1.62x1-2.33x2 –1.43x3=0.87 

0.65x1-1.43x2 +2.18x3=-2.87 

9,10 0.93x1+1.42x2 -2.55x3=2.48 

1.42x1-2.87x2 +2.36x3=-0.75 

-2.55x1+2.36x2 –1.44x3=1.83 



11,12 1.42 x1-2.15x2 +1.07x3=2.48 

-2.15x1+0.76x2-2.18x3=1.15 

1.07x1-2.18x2+1.23x3=0.88 

Continuation of the table  6.1 

1 2 

13,14 2.23x1-0.71x2 +0.63x3=1.28 

-0.71x1+1.45x2 –1.34x3=0.64 

0.63 x1-1.34x2 +0.77x3=-0.87 

 

15,16 1.63x1+1.27x2 –0.84x3=1.51 

1.27x1+0.65x2 +1.27x3=-0.63 

-0.84x1+1.27x2 –1.21x3=2.15 

17,18 0.78x1+1.08x2 –1.35x3=0.57 

1.08x1-1.28x2 +0.37x3=1.27 

-1.35x1+0.37x2 +2.86x3=0.47 

19,20 

 

 

0.83x1+2.18x2 –1.73x3=0.28 

2.18 x1-1.41x2 +1.03x3=-1.18 

-1.73x1+1.03x2 +2.27x3=0.72 

21,22 

 

2.74x1-1.18x2 +1.23x3=0.16 

-1.18x1+1.71x2 –0.52x3=1.81 

1.23x1-0.52x2 +0.62x3=-1.25 

23,24 1.35x1-0.72x2 +1.81x3=0.88 

-0.72x1+1.45x2 –2.18x3=1.72 

1.38x1-2.18x2 +0.93x3=-0.72 
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MATRIX INVERSION  

 

Purpose of work: to revise the function construction graphs, and learn to 

locate the roots of transcendental equations. 

 

7.1 Theoretical Data   

 

The equation  

f(x)=0                                                           (7.1) 

 

is called transcendental if it has trigonometrical or other special functions ( 

exponent, logarithmic etc.) of the variable  х . 

The transcendental equations have both indeterminative and infinite number 

of solutions. 

If the equations do not have analytical solution, they are solved by the 

iteration methods. The root location, that is determination of the interval of the root 

existence and its initial estimate, is the first stage of such task solution.  

To locate the transcendental equation real roots, it is often enough to 

construct the graph of the function f(х) or to transform the output equation f(х)=0 

into 1(x)=2(х), construct the graphs of two functions 1(x) і 2(х) and determine 

the sphere of the point of their intersection. The required interval of the existence 

of the root [a,b] should meet the requirement of  

 

                                     f(a)*f(b)<0.                                                  (7.2) 

 

7.2 Task   

 

Locate the first positive root of the transcendental equation given in the table 

7.1 using the graphic method.    

 

7.3 Methodical Recommendations   

 

The left search limit хн  equals to zero ( if f(0) exists) or to the nearest to it 

positive value, for example 0.01 or 0.1. The right search limit is free and depends 

on the function f(х). It should not be more than 5 for the table equations. As to the 

initial value of the search step х, no more than 20 function values are computed at 

the search interval. Display them. 

If the change of the sign of the function f(х) does not take place, reduce  х 

and (or) increase хк,     and repeat the computation.   
To measure the graph determine (with the programme or visually) the 

function minimal and maximal value, the graph limits on the basis of this data, and 

construct the graph.   



Use the graph not only to locate the root, but also to pick out the most 

appropriate method of its refinement.  

 

The function f(х) is determined as the user’s function  

 

Table 7.1 – tasks for the laboratory work №7 

№ 

 
Equations  Solution method  

1 2 3 

1 2sin(x+/3)-0.5x
2
+1=0 Tangent 

2 cos(x+0.3)-x
2
=0 Tangent 

3 tg
3
x-x+1=0 Tangent 

4 2arctg x –x+3=0 Tangent 

5 (x+3)cos x-1=0 Tangent  

6 tg(0.58x+0.1)-x
2
=0 Tangent  

7 0
62

7





x
xln  Chord  

8 0
051

1 2  x
x.tg

 Bisection 

9 2ln x-x/2+1=0 Bisection 

10 ln x –1/ x
2
=0 Bisection  

11 4.3sin 4x-3.5x=0 Chord 

12 2
x
-2

(x-2)
-1=0 Bisection  

13 cos(15.6x)+0.5=0 Bisection 

14 0.5
x
+1-(x-2)

2
=0 Tangent 

15 3
(x-1)

-2-x=0 Chord  

16 x
2
cos 2x+1=0 Chord  



17 x
2
-2

(x-1)
=0 Tangent 

18 5sinx-x=0 Bisection 

19 arctg(x-1)+2x=0 Chord 

20 (x-2)
2
-2

x
=0 Tangent 

Continuation of the table  7.1 

1 2 3 

22 2e
x
-5x-2=0 Tangent 

23 cos(x+0.5)-x
3
=0 Tangent 

21 x
2
-20sin x=0 Chord 

24 2arctg x-1/2x
3
=0 Chord 

25 e
-x
+x

2
-2=0 Chord 
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LOCATION OF ROOTS OF ALGEBRAIC EQUATIONS  

 

Purpose of work: to learn to locate roots of algebraic equations.. 

 

8.1 Theoretical Data   

 

Algebraic equations of n-order  

 

a 0x
n
+a 1x

n-1
+…+a n-1x+a n=0                                         (8.1) 

 

Have  n roots 

. 

When the location of roots of algebraic equations takes place their following 

characteristics should be taken into account: 

1) n roots of the algebraic equations of n-order can be real or complex:; 

2) if all the coefficients а i are real, all complex roots make up complex 

conjugate pairs;; 

3) the number of the positive real roots equals or is less than the number of 

the sign change of the sequence of the coefficients а i of the polynomial f(x); 

4) the number of the negative real roots equals or is less than the number of 

the sign change of the sequence of the coefficients of the polynomial f(-x); 



5) if f(x) possesses the value of different signs at the ends of the 

segment[a,b], that is f(a)*f(b)<0, there is at least one root in the middle of this 

segment. It is integrated if the derivative   f '(x) keeps the constant sign in the 

middle of the [а ,b].  постійний знак; 

 6) the top Rв and bottom Rн limits of the positive R
+
  and negative R

-
   of the 

real roots can be computed by the Lagrange theorem : 

 

,a/ВR k
в 01

                                               (8.2) 

where k – number of the first of the negative coefficients of the equation  

(8.1) with  а 0>0; 

    В – the biggest of the absolute values of the negative coefficients : 

 

                                        R
+

Н=1/R1,    R
-
Н=-R2,   R

-
В= -1/R3,,                      

(8.3) 

 

where   R1, R2, R3- variables computed according to the formula (8.2) for the 

corresponding auxiliary equations:   
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                                        (8.4) 

 

If R
-
Н and R

+
В, are known every root can be computed by the algorithm of 

the fig. 8.1. 

 

      8.2 Task  

 

Locate each real root of the algebraic equation f(x) =0 for f(x) given in the 

table 8.1. Construct the graph of the function f(x) on the interval [R
-
H, R

+
B].  

 

8.3 Methodical Recommendations ї  

 

Save the programme of the root location and use it as the first part of the 

programme of the equation solution to refine roots in the laboratory works.   

 

Table 8.1 – tasks for the laboratory work №8 

№ 

 
f(x) 

Solution 

Method  

1 4.2x
3
-31.92x

2
+74.3x-51.87 Bisection  

2 3.6x
3
-172.8x

2
+5.184x-237.32 Chord  

3 5.8x
3
-47.56x

2
+121.2x-97.02 Bisection  

4 6.1x
3
-90.28x

2
+388.2x-506.2 Chord  

5 3.6x
3
-39.96x

2
+12.17x+426.4 Bisection  

6 2.7x
3
-37.26x

2
+16.71x-202.7 Chord  



7 1.3x
3
-5.98x

2
-1.09x+13.76 Simple iteration  

8 4.5x
3
-26.1x

2
+176.6x-112.4 Simple iteration  

9 5.1x
3
-62.22x

2
+142.7x+109.2 Simple iteration  

10 1.6x
3
-3.04x

2
-29.18x+8.98 Simple iteration  

Continuation of the table 8.1  

1 2 3 

11 -2.3x
3
+0.23x

2
+17.05x+13.48 Simple iteration  

12 1.6x
3
-14.24x

2
+38.13x-29.02 Simple iteration 

13 5.3x
3
-36.04x

2
+12.25x+28.05 Simple iteration  

14 -2.6x
3
+4.68x

2
+14.38x+3.822 Bisection  

15 -1.5x
3
-14.25x

2
-37.98x-22.03 Simple iteration  

16 3.4x
3
-46.58x

2
+127.3x-60.34 Simple iteration  

17 2.8x
3
-25.76x

2
+6.18x+107.4 Bisection  

18 -1.4x
3
-10.78x

2
-22.54x-11.85 Simple iteration  

19 3.1x
3
-62.6x

2
+414.7x-898.9 Simple iteration  

20 1.6x
3
-12.48x

2
+25.04x-8.12 Bisection  

21 5.4x
3
-54x

2
+140.6x-73.8 Simple iteration  

22 2.7x
3
-17.6x

2
-45.4x+123 Bisection  

23 -1.8x
3
-5.58x

2
+1.5x+119 Bisection  

24 -2.5x
3
+8.25x

2
+61.9x-117 Simple iteration  
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Refinement of the roots of transcendental and algebraic equations  

 

Purpose of work: to learn to solve transcendental and algebraic equations.. 

 

9.1 Theoretical Information   

 

Computational solution of the equation  

 

f(x)=0                                                                          (9.1) 

 

has two stages: root location and refinement of their initial approximation by the 

iteration methods. 
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The bisection, chord, tangent, and simple iterations methods are the most 

accepted ones to refine roots.   

 

9.1.1  Bisection Method  

 

The Bisection Method or the method of half-division consists in repeated 

halving of the section which has a root:  

 

2

ba
x


  , 

 

Where  a і b – left and limit of the root, that is   

 

                        b>a,                                                      (9.2) 

 

                   f(a)*f(b)<0.                                               (9.3) 

 

To do every subsequent division the half of the section at the ends of which 

the function has the opposite sign is chosen. Along with it the interval of the root 



existence converges at the expense of change of one of its limits: left (a = x) or 

right (b = x).   

The iteration division process finished when the condition 

 

                          b-a,                                                    (9.4) 

 

is done 

where   - given accuracy of the root computing. Sometimes the (9.4) is 

required to be done simultaneously with: 

 

                              |f(x)| .                                                 (9.5) 

 

The Bisection Method is a simple and reliable method to search simple roots 

of the equation f(x) =0. It runs together with any continuous function f(x), 

including those which are not differentiated. The speed of coincidence is not high. 

To obtain accuracy   

           Nlog2((b-a)/ )                                           (9.6) 

 

Iterations are spent. This means that to get every 3 correct decimal digits about 10 

iterations are done.   

If there are some roots on the section [a,b] the process coincides to one of 

them. The Method is not used to search the multiple root of the paired order.   

 

9.1.2 Chord Method  

 

The Chord Method or the method of proportional parts consists in 

subsequent subdivision of the section [ a , b] which has a root into the parts 

proportional to the function values at the end of the section: 

 

                                           
  xb

xa

bf

af




 ,                                              (9.7) 

 

So  

                                       
   
   afbf

afbbfa
x




 .                                           (9.8) 

 

 

Geometrically it is equivalent to the replacement of the graph of the function 

f(x) by the chord that passes through the points (a , f( a )) and (b, f(b)). 

 

        To finish the iteration process the condition   

 

                   |xi+1-xi|,                                                 (9.9) 

 



Is used instead of the condition (9.4) 

 

Where  xi+1, xi – the last computed and previous approximation of the root In 

other cases this method is analogous to the Bisection Method but provides faster 

coincidence. 

 

9.1.3 Tangent Method  

 

The Tangent Method or the Method of Newton consists in subsequent 

approximation of the function f(x) by the tangents to curve in the point of the 

previous approximation (xі, f(xі)), which cross the entire abscissa in the point of the 

next approximation xі+1 determined by the formula   

                                

  .
)x(f

)x(f
xx

i

i
ii


1                                        (9.10) 

 

The sequence (9.9) keeps to the real value of the root of the equation f(x)=0, 

if the initial approximation of the root belongs to the interval [a, b] (f(a)*f(b)<0), 

on which the derivatives  f'(x) and  f ''(x) save their sign and the condition  

 

               f(x0)* f’’(x0)>0.                                                        (9.11) 

 

is met. 

 

The iterations are stopped when the conditions (9.9) and (or) (9.5) are met.  

The Newton’s Method is efficient if the good initial approximation to the 

root is known and the graph of the function has large slope at the root environs. In 

preferable cases the number of correct decimal signs in the next approximation is 

doubled, that is the process coincides very quickly. 

The necessity to compute not only the function value but also the derivative 

value in every point is the method’s drawback.  

 

9.1.4 Simple Iteration Method  

The Simple Iteration method consists in replacement of the initial equation 

f(x)=0  by the equivalent to it equation  

              

x=(x)                                                       (9.12) 

and computed sequences  

                               

xi+1=(xi)                                                    (9.13) 

 

(і=1, 2, 3,...), which coincide to the accurate solution i. 

Iterations are stopped if the condition  

            



                                                             |xi+1-xi|.                                        

(9.14) 

 

is met.  

 

        

    |`(x)|<1.                                         (9.15) 

 

is a sufficient and necessary condition of the method coincidence. 

  

The coincidence speed is increased when |`(x)| is reduced.   

          

9.2 Task  

 

Compute the first positive root of the transcendental equation from the table 

7/1 and all real roots of the algebraic equation from the table 8.1 given in the tables 

by he methods with the accuracy of 654 10  і 10 10  , . 

 

9.3 Methodical Recommendations   

 

Determine the intervals [a , b] for each root or the initial approximations of 

the roots x 0  using the results of the works 7 and 8. 

Before the tangent or simple iteration methods are applied, check their 

coincidence.  

Display the computation results of each operation.  

To verify the solution, display not only progressive approximation of the 

roots but also the value of the function f(x) in these points.  

Evaluate the speed of coincidence of different methods.  

  

Laboratory Work  10 

 

SOLUTION OF THE NON-LINEAR EQUATION SYSTEMS  

 

Purpose of work: to learn to solve non-linear equation systems by the 

iteration methods.   

     

 10.1 Theoretical Data  

         

 The system of   n equations with the unknown  n  is of the form  : 

 

,)x,...,x,x(f n 0211   

                 ,)x,...,x,x(f n 0211                                             (10.1) 

……………….. 

.)x,...,x,x(f nn 021   



 

 

Iteration methods are used to solve the non-linear equation systems.  

 

Some of them are as follows:  

 

10.1.1 Simple Iteration Method  

 
To apply the method the initial eqaution system is transformed into: 

).x,...,x,x(x

..................................

),x,...,x,x(x

),x,...,x,x(x

nnn

n

n

21

2122

2111













                                            (10.2) 

 
If the initial approximations of the roots are   

 

                            ),x,...,x,x(X ][
n

][][][ 00
2

0
1

0 


                                     (10.3) 

 

To make them more accurate the following formulae are used :  

 

                             

),x,...x,x(x

.................................................

),x,...,x,x(x

),x,...,x,x(x

]k[
n

]k[]k[
n

]k[
n

]k[
n

]k[]k[]k[

]k[
n

]k[]k[]k[

11
2

1
1

11
2

1
122

11
2

1
111



















                              (10.4)     

 

Where    k=1,2,3,…,- the iteration number 
The iterations are stopped if the condition  

 

                                        ,xxmax ]k[
i

]k[
i

i
 1                                        (10.5) 

 

Is met 

де     - the admissible error of the results  
The sufficient conditions of the coincidence of the iteration process are in the form:  

                                     






n

j i

][
n

][][
j

,
x

)x,...,x,x(

1

00
2

0
1

1


                                (10.6) 

 

or 

 






n

j j

][
n

][][
i .

x

)x,...,x,x(

1

00
2

0
1 1


 

 



They are done for all the values    i ( i =1,2,... ,n). 

   

10.1.2 Seidel Method  

    
The Seidel Method differs from the simple iteraion method only by the formulae of the 

root refinement: 

 

                                    

).x,...,x,x(x

),x,...,x,x(x

),x,...,x,x(x

]k[
n

]k[]k[
n

]k[
n

]k[
n

]k[]k[]k[

]k[
n

]k[]k[]k[

1
21

11
2122

11
2

1
111



















                       (10.7) 

 

     

In the majority of cases it provides fasteк coincidence of the iteration 

process.  

       

10.1.3 Newton’s Method  
    

 The Newton’s Method derives from the Tangent Method for one equation.  

The vector of increase of the roots X


 at every step of the iteration process is defined by 

solution of the system n of linear equations with n unknowns:    

 

                                ),(FW ]k[]k[ 11  


                                    (10.8) 

 

 

1

1

x

f




     

2

1

x

f




     …     

nx

f



 1  

where             





X

F
W 



       
1

2

x

f




     

2

2

x

f




     …     

nx

f



 2                                         

(10.9) 

 

1x

f n




     

2x

f n




     …     

n

n

x

f




 

 

Jacobian matrix;  

                       )X(F


 - vector of the right parts of the output system of 

equations  (10.1). 

 

Root refinement is made according to the formula:   

 

                             .XXX ]k[]k[


 1                                      (10.10) 

      

Iterations are stopped when the condition(10.5) is met. To have more strict 

verification the condition    



 

                            )x,...,x,x(fmax ]k[
n

]k[]k[
i

i
21 .                         (10.11) 

 Can be verified together with the condition   (10.5).   

 

10.2 Task  
    

Solve the non-linear equation system with the initial approximation taken from the table 

by the given method.  

     

10.3 Methodical Recommendations  
    

1. Mark the variables in the equation output systems by one name with different indices.  

2. Check wehter the coincidence conditions are met with the given initial approximations. 

3. To solve the non-linear equation systems by the Newton’s method make 

up the sub-programmes to compute the Jacobian matrix, solve the linear and non-

linear equation systems. Enter the initial approximations, address to the sub-

programme of solution of the non-linear equation system, display the computing 

results in the main module. 

4. Make up the sub-programme to compute n...1 . If the system is solved 

by the Seidel method and that of simple iterations.  

 

Table 10.1 – Tasks for the Laboratory Work №10 

Number of the 

variant  
Equation system  Method  

Initial 

Approxima

tions  

1 2 3 4 

1     2x + tg xy = 0 

    ( y
2 
-7,5)

2
-15x=0 

Simple iterations  x0=3 

y0 =0 

2     tg x -cos 1,5y=0 

    2y
3
-x

2
-4x-3=0 

Seidel  x0=0 

y0 =1 

3    10x
2
+9

 
y

2
-1=0 

    sin(3,2x+0,3y)+3x=0 

Newton’s  x0=0 

   y0=0,5 

4     cos y + 2x=0 

    0,24x+3,5y+x
2
y=0 

Seidel  x0=0 

y0=0 

5     sin(x+0,4)+3,5y-1,5=0 

    cos(y+0,2)+0,5x=0 

Simple 

Iterations  

     x0 =-1,3 

   y0=0,5 

6     sin(3,3x-0,4y)+4x=0 

    8x
2 
+25y

2
-1=0 

Newton’s  x0=0 

   y0=0,5 

7     0,16x+2,1y+x
2
y=0 

    cos y + x=0 

Seidel    x0=-1 

 y0=0 

8     2,1y
3
-x

2
-4x-3=0 

    tg 2x-cos 2y=0 

The same   x0=0 

 y0=1 
Continuation of the table  10.1 

1 2 3 4 



9     (y
2 
- 7,5)-15x=0 

    tg xy+2x=0 

 

Simple iterations    x0 =3 

  y0=0 

11     tg xy+6x=0       

    -120x+(y
2 
- 20)

2
=0                                                    

The same        x0=3 

   y0= - 0,5 

12     0,9x+cos(y+1,6)=0 

    0,1-2y+sin(x+1,8)=0 

 Simple iteations  x0 =0,5 

y0=0,4 

13     cos(y+0,6)+0,6x=0 

    sin(x+0,8)+2y-1=0 

The same     x 0= - 0,8 

y0=0,5 

14     tg 4x-cos 3y=0 

    2,3y
3
-x

2
-4x-3=0 

Seidel        x0 =0 

      y0=1 

15 

 

    2,2y
3
-x

2
-4x-3=0 

    tg 3x-cos 2,5y=0 

The same        x 0=0 

      y0=1 

16 

 

    5x+tg xy=0 

    (y
2
-1,5)

2
-7,5x=0 

Newton’s  x0=0,6 

      y0=-2 

17 

 

 

    0,5y-0,5+sin(x+1,2)=0 

    0,7x+cos(y+0,8)=0 

The same  x0=-1 

      y0=0 

18 

 

    sin(x+2,1)-3y+0,4=0 

    cos(y+1,8)+1,2x=0 

Simple iterations  x0=0,4 

y0=0,5 

19 

 

    4,9y+0,32x+x
2
y=0 

    cosy+3x=0 

Thу same        x 0=0 

      y0=0 

20 

 

    (y
2
-5)

2
-20x

-
=0 

    tg xy+4x=0 

Newton’s  

 

 

x0=0,3 

 y0=-2,8 

21 

 

    sin(4x-0,5y)+5x=0 

    7x
2
+30y

2
-1=0 

The same  

 

 

      x0=0 

y0=0,5 

22 

 

    tg 6x-cos 4y=0 

    2,5y
3
-x

2
-4x-3=0 

Simple iterations        x0=0 

      y0=1 

23 

 

    6x+tg xy=0 

    (y2-2)
2
-12x=0 

Newton’s  x0=0,5 

      y0=-2 

24 

 

 

    sin(3,1x+0,2y)+2x=0 

    12x
2
+5y

2
-1=0 

The same        x0=0 

      y0=0,5 

Continuation of the table  10.1 

1 2 3 4 



25 

 

    Cosy+5x=0 

    0,48x+6,7y+x
2
y=0 

Seidel        x0=0 

      y0=0 

26 

 

    tg 5x-cos 3,5y=0 

    2,4y
3
-x

2 
–3-4x=0   

The same       x0=0 

      y0=1 

27 

 

  14x
2
+3y

2
-1=0 

    sin(3x+0,1y)+x=0 

Newton’s  

 

 

 

      x0=0 

      y0=0,5 

28 

 

    0,6x+7,5y+x
2
y=0 

    cosy+6x=0 

Simple 

Iterations  

      x0=0 

      y0=0 

29 

 

    sin(x+1,6)-1=0 

    cos(y+1,2)+0,8x=0 

The same  x0=0,5 

y0=0,8 

30 

 

    4x
2
+35y

2
-1=0 

    sin(4,2x-0,6y)+6x=0 

Newton’s        x0=0 

 y0=0,5 

 
  

Laboratory work 11  

 
NUMERICAL SOULTION OF LINEAR DIFFERENTIAL EQUATIONS  

     

Purpose of work: to learn to solve ordinary linera differentiaal equations 

with the initial conditions and their systems by the numerical methods.  

 

11.1 Theoretical Data  

 

Solution of differential equations makes up the basis of mathematical 

simulation of different devices, processes, systems.  

Solution of differential equations is applied in electrical engineering and 

disciplines derived of it when the transiant processes are computed.  

The ordinary differential equation of the n-type is of the form:  
     

                             ,)y,...,y,y,y,x(F )n( 0                                            (11.1) 

 

Where    x  - independent variable; 

                 y(x) – unknown function of theindependent variable,                

,
dx

dy
)x(y   ,

dx

yd
)x(y 2  

n

n)n(

dx

yd
)x(y   - its derivatives .                                                         

    

To determine the private separate solution (11.1) n of initial conditions  must 

be known:  

 



            ,y)x(y 00  ,y)x(y 00  …, ,y)x(y )n()n(
0

1
0

1                     (11.2) 

 

The numerical solution of a differential equation lies in determination of the 

table of the values  yi(xi)(i=0,1,2,…,k) on some interval  [ x0, xk]. 

The difference between two adjacent table values of the argument is called 

the intergration step. 

 

                                                 h = xi+1 – xi .                                                      (11.3) 

 
 The methods Runge-Cutta is one of the most widely-spread method of solving of 

differential equations.                                                                                    

 The Runge-Cutta methods are co-ordinated with the expansion of the 

function y(x) into the Tailor series in the circumference of the point xi up to the 

members which have h
p
 : 

 

                              .y
!p

h
...y

!

h
yhyy )p(

p

iiii 
2

2

1                           

(11.4 ) 

 

The index of the order p with h in the last member which was summed up 

means the method’s order in the Tailor series.  
The first order method of Runge-Cutta is called Euler method, that of the second order – 

modified Euler method or Euler –Koshee. The methods of higher orders don’t have special 

names. 

 To apply the Runge-Cutta methods the output differential equation (11.1) is transformed 

into n system of the first order differential equation system in the normal Koshee form:  

 

1y= f1(x,y1,y2,…,yn), 

2y =f2(x,y1,y2,…,yn), 

…………………                                                  (11.5) 

ny = fn(x,y1,y2,…,yn), 

                              

                          y1(x0)=y10,y2(x0)=y20,…,yn(x0)=yn0..                                    (11.6) 

 

 The additional varibles y1, y2,…, yn and their initial conditions are by all 

means related to the unknown function y and its derivatives. 
According to the Euler method, one step of the differential equation system (11.5) with 

the initial conditions (11.6) solution is done according to the formula: 

 

                         yi (x+h) = yi(x)+ hfi(x,y1,y2,…,yn),                                    (11.7) 

i=1,2,…,n 

 

    The method of Euler- Koshee requires computing of the vector of derivatives ( 

the right partsof the differntial equations) ),( yxF


 in two points:  

 



                           K1i=fi (x,y1,y2, …, yn ),                                                   (11.8) 

              K2i=fi (x+h,y1+hK11,y2+h12, …, yn+hK1n); 

                           

).KK(
h

)x(y)hx(y iiii 21
2

                                   (11.9) 

    

With the fourth-order Runge-Cutta method the vector of derivatives at every 

step of numerical intergration is computed four times:  

);Kh)x(y,hx(FK

),K
h

)x(y,
h

x(FK

),K
h

)x(y,
h

x(FK

)),x(y,x(FK

34

23

11

1

22

22

















                                    (11.10 ) 

 

).KKKK(
h

)x(y)hx(y 4321 22
6


                            (11.11) 

     

Computing according to the above-mentioned formulae goes on until the end 

of the interval [x0, xk] is reached.  
The error of the Runge-Cutta method is identified by the expression:  

                       phK  .                                                     (11.12) 

     

The range of the coefficient  K depends on the system under solution. 

 

11.2 Task  
     

Solve the system of differential equations with the initial conditions taken from the table 

11.1 in the given interval with the given step by the method of Euler-Koshee ( od variants). 

Compare the results. 

     

 

11.3 Methodical Recommendations 

 

1. Mark the dependent variables of the output equation system by one name 

with different indices ( for example y=y1, z=y2 ).  

2.Make separate sub-programmes to compute the vector of the derivatives F


 

with the given values x  and  y


 and one step of the numerical intergration of the 

differential equation system by the given method. 

3. Enter the output data (x0, xk, h, n,initial conditions) and iteration cycle 

with the independent variable x, in the main module; call the given method sub-

programme in the middle of it and display the results ( as a table or graph). 



 4. To control the programme first solve the second order differential 

equation test system for which the analytical solution is known. Compare the 

results of the numerical and analytical solutions. 
 

Table 11.1 – Tasks for the laboratory work  №11 

 

№ 
 

Differential equations  Parametres  Interval  Step  Initial 

conditions  

1 2 3 4 5 6 

 1,2 

 
bay)cos(xx   

1
2




 t
bxt

a
y  

a=2,5 

b=3,0 

    tн=0 

 tк=0,3 

ht=0,02    x(0)=1 

y(0)=0,05 

 3,4 

 
 yt)axsin(x  2  

y 12  byxt  

a=2,0 

b=3,5 

    tн=0 

 tк=0,3 

ht=0,02    x(0)=1 

   y(0)=0,5 

 5,6 

 
 x yaxt  22  

      y x)bycos(   

a=2,5 

b=3,5 

    tн=0 

  tк=0,15 

ht=0,01    x(0)=0,5 

   y(0)=1 

 7,8 

 
x ate )yx(  22

 

      y ybx 2  

a=2,0 

b=4,5 

    tн=0 

   tк=0,28 

ht=0,02    x(0)=0,5 

   y(0)=1 

 9, 

10 

 

 )ytabtln(x 222   

      y
222 xta   

a=3,0 

b=2,5 

    tн=0 

  tк=0,18 

ht=0,01    x(0)=1 

   y(0)=0,5 

 11,12 

 
      y

x

xsin
yz   

      z
2

2

1 x

x
z





 

40
5,2


   

25  

 x н=0 

xк=1 

hx=0,1    y(0)=0 

   z(0)=-0,4 

 13,14  y)zy(zy    

    y)zy(ez y   

n25,0  

2    

n=4 

    xн=0 

  xк=1,2 

hx=0,1    y(0)=1 

   z(0)=0 

 

 

 
Continuation of the table  11.1 

1 2 3 4 5 6 

15,16 c)azycos(y                                        

x
cyx

a
z 


 1

2
 

a=2,0 

c=4,5 

    xн=0 

  xк=0,3 

hx=0,02    y(0)=1 

   z(0)=0,05 

 17,18 

 
x)ysin(zy  2  

12  zyxz   

       5,2  

       0,3  
    xн=0 

  xк=0,3 

hx=0,02    y(0)=1 

   z(0)=0,5 

 19,20 

 
y

22 kyxz   

z )zncos(y   

       k=2 

       n=4 

    xн=0 

    xк=0,28 

hx=0,02    y(0)=0,5 

   z(0)=1 



21,22 

 
y

)zy(ecx
22  

      z zdy 2  

        c=2 

d=4,5 

    xн=0 

    xк=0,18 

hx=0,01    y(0)=1 

   z(0)=0,5 

 23,24 

 
)cxzxkln(y  222  

     z
22 y)kx(   

        k=3 

 c=2,5 

    xн=0 

  xк=0,3 

hx=0,02    Y(0)=1 

   z(0)=0,5 

 

 

Laboratory Work  12 

 
ІINTERPOLATION   

     

Purpose of work:  to learn to determine the value of the functions given in 

the form of a table under any value of the arguments with the help of interpolation 

of functions by step polynomials.  

     

12.1 Theoretical Data  
    

Many functional dependences in science and engineering are given not in an analytical 

way, but in the form of tables and graphs. 

Computers enter the information on these functions in the form of arrays. 

For example: 

 

                                                 yi = f (xi),                                                        (12.1) 

 

                                              i=0,1,…,n .                                                      (12.2)    

    

Interpolation consists in finding approximate value of the non-linear 

function y in the points which differ from the nodes ( ixx  ).This task can be done 

if the function F(x), which iterpolates and gets the values at some interval[ xj, xj + k 

]  is found. These values coincide with the values of the table function(12.1)  in the 

node points:    

                      

                        F(xj )=yj,…,F(xj+1)=yj+1,…,F(xj+k)=yj+k. .                        (12.3) 

 

     

The point xj  is called the interpolation initial node.  

The algebraic polynomial  

 

                         ,a...xaxa)x(P k
kk

k  1
10                               (12.4) 

 

                              nk  .                                                    (12.5) 

 

Is often used as the interpolating function.  

 



If   k=n  the polynomial  (12.4) is a global interpolant as in this case its 

values coincide with the values of the output function in all nodes    ( j=0, j+k=n ). 

If the table function is given in equispaced nodes, that is:   

 

                           xi+1–xi=h=const,                                                  (12.6) 

 

the value y(x) can be defined acording to the first interpolation Newton’s formula:    

                        

,y
!k

)kq)...(q(q
...

y
!

)q(q
yqy)x(P)x(y

j
k

jjjk











11

2

1 2

                      (12.7) 

 

Where  
h

xx
q

j
 ;                                                                                             

(12.8) 

                j
k

jj y,...,y,y  2  - forward differences of the corresponding orders at 

the initial node.  

If the table function nodes are placed irregularly (xi+1-xi=var), the values 

y(x) can be determinde by theinterpolation Lagrange formula:   

 

 )x(L)x(y k  

 

.
)xx)...(xx)(xx)...(xx)(xx(

)xx)...(xx)(xx)...(x_x)(xx(
y

kj

jm kjmmmmmjmjm

kjmmjj

m







 



111

111
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The formulae  (12.8), (12.9) can be used to find  y(x) on theinterval    [xj, 

xj+k], but the highest accuracy is observed near the initial node of interpolation  xj : 

 

  .x,xx jj 1  

 

   So, befor we use the interpolation formulae the number of theinterpolation 

initial node should be determined. The choice condition can be formulated as 

follows: 

 

                                                 0  with x < x0, 

                                                 j=     n-k при x > xn-k , 

                                                and with  xi   x < xi+1, i=1,2,…,n-k . 

 
The linear or quadratic interpolation is normally used in technical calculations. In this 

case, the formulae (12.7) and (12.9) are of the form    

When           k = 1: 
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when           k = 2:  
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The formulae  (12.10) and (12.11) are the equations of the line which passes 

through the points    ( xj, yj )   andі    ( xj+1, yj+1 ), and  (12.12) і (12.13) – the 

equations of the quadratic parabola which passes through the points  ( xj, yj ),     ( 

xj+1, yj+1 ),    ( xj+2, yj+2 ).        

 

12.2 Task  

   

Compute the approximate values of the table functions given in the table 

12.1 for the arguments which are changed according to the following laws:  

 

Odd variants:  

 

x=10 sint,  t=0.5, 0.6,…,1.5; 

even variants : 

x=10 cost,  t=0.1, 0.2,…,1. 

The quadratic interpolation of Newton or the linear interpolation of 

Lagrange   are used depending on the node placement. Varify the solution with the 

help of graphs. 

 

12.3 Methodical Recommendations  

 

1. Mark  arrays of the argument table values  )x,...,x,x(X n10


 function  

)y,...,y,y(Y n10


 and value   x in the programme by diferent identifiers, for 

example, 



                            ,XTX 


   ,YTY 


   ,Xx      .Yy               

2. Verify the condition x=xj after searching the interpolation initial node 

number. To meet the condition don’t apply the interpolation formula, determine the 

values from the table  :  y=yj. 
 

 

Table 12.1- Task for the Laboratory Work  №12 

Number 

of the 

variant  

Table Functions  

 

1 2 

1,2 

 

xi -1 1 3 5 7 9 11 13 15 

zi 8,71 109,8 124,4 122,5 112,1 96,6 80,2 6,3 57,9 

3,4 

 

xi 2 3,2 4,4 6,2 7,8 9,5 10,9 11,5 12,7 

wi 19,9 22 30 42,1 65 99,5 120 126,8 133,4 

5,6 

 

xi -3,5 -1,5 0,5 2,5 4,5 6,5 8,5 10,5 12,5 

hi 0,45 -3,09 -4,01 -3,9 -3 -1,62 -0,18 0,99 1,72 

7,8 

 

xi 1,25 2,59 4,4 6,54 8,5 11,5 13,5 14,9 15 

Pi 3,0 5,0 7,0 8,5 9,3 9,9 10,6 11,2 11,64 

9,10 

 

xi -2 0 2 4 6 8 10 12 14 

fi 7,84 7,13 6,31 5,29 4,03 2,5 0,87 -0,68 -0,79 

11,12 

 

xi -1,5 1 2,7 5,5 6,5 8,3 9,6 11,2 12,75 

Ui 2,45 1,12 -1 -2,1 -2,3 - 1,9 -1 2 3,5 

13,14 

 

xi 0,67 1,5 2,5 3,5 5 6,5 10 12,4 14 

Si 110 118,7 124,5 125,2 122,5 115,1 88,3 70 61,2 

15,16 

 

xi 0,5 2,5 4,5 6,5 8,5 10,5 12,5 14,5 16,5 

pi 23,7 20,1 27,8 45,3 79,2 115,4 132,9 141,1 147 

17,18 

 

xi -2,77 -0,5 1 2 3,5 7 10 11,5 12,5 

zi -1,5 -3,65 -4,03 -4,0 -3,54 -1,58 0,73 1,4 1,83 

19,20 

 

xi 0,5 2,0 3,5 5,0 6,5 8,5 9,5 11,0 12,5 

Wi 1,23 0,92 0,78 0,68 0,6 0,53 0,49 0,47 0,45 

21,22 

 

xi -1 1 3 5 7 9 11 13 15 

hi 1,02 2,57 5,51 7,52 8,69 9,38 9,79 10,35 1,64 
Continuation of the table 12.1 

1 2 

23,24 

 

xi -3 0,5 1,5 2,5 4,3 6,2 7,7 9,0 11 

fi 9,4 7,52 6,75 5,8 3,6 0,53 -1,5 -2,94 -4,4 

25,26 

 

xi -4 -2 0 2 4 6 8 10 12 

Ui 3,1 2,66 1,74 0,35 -1,26 -2,28 -2,07 -0,54 2,53 

27,28 

 

xi 0 0,4 1,5 3,0 4,6 7 9,2 11,5 13 

Si 1,47 1,26 0,99 0,82 0,7 0,57 0,5 0,46 0,44 

 

3. To do graphic varification display as a graph the table function and its 

iterpolated values in different forms or different colours.  For example, display the 



function in the form of the “grid” ( sections with the end coordinates  (xi,0), (xi,yi), 

i=0,1,. .,n), and the interpolated values in the form of the points (x,y) or the 

function in the form of the broken curve which consists of the sections with the 

coordinates (xi-1,yi-1) (xi,yi),  and the interpolated values in the form of the grid.  
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APPROXIMATION DONE BY THE LEAST-SQUARES METHOD  

 

Purpose of work: to learn to describe table functions by analytical expressions. 

 

13.1 Theoretical Data  

 

Approximation ( Lain  : approximare – to approach) – approximate 

expression of some values through other, simpler ones.  

 

Table function approximation   

    

                                   yi = f(xi) ,                                                    (13.1) 

 

i=1,2,…,n .                                                   (13.2) 

 

made by the least-squares method consists in determining some analytical  

F(x),function parametres that provide the functional minimization.   

                        .)y)x(F(Ф
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i
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2                                            (13.3) 
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is chosen to be  the approximating function, the task consists in determining the vector of the 

coefficients )C,...,C,C(C k10


  by solving the system oflinear equations of  (k+1) 

order.  
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               m=0,1,…,k..                                                                                   (13.8)           

    

After the transformations the system  (13.5) is of the form : 
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The system (13.9) shows that the the elements of the matrix of the coefficients A 

and the vectors of the free terms B


 can be described by the formulae:  
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When the coefficients are determined, the system (13.9) can be solved by 

any of the known methods, for example Gaussian.  
Approximation done by the least-squares method is often used to smooth the table 

functions obtained as a result of the experiment as well as to reduce the amount of information 

on the table functions when the requirements on computation accuracy are not strict..   

 

13.2 Task  

Approximate the table function given in the table of the work 12 by the step 

polynomial of the k order by the leat-squares method.  For odd variants k=3, for 

even ones - k=2. Illustrate the results by graphs. Do the programme twice with 

different number of the table points  (n=9 і n=5). Evaluate theinfluence of the 

number oа points on the approximation accuracy.   

 

 13.3 Methodical Recommendations  



 
 When  standard programmes are applied to solve the equation system (13.9) the indices 

of the standard equation system ( which don’t have coefficients with zero indices) are 

coordinated with those of the system  (13.9). The coordination consists in change of the formulae 

( 13.10).    
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NUMERICAL INTEGRATION 

 

Purpose of work: to learn to compute integrals from the functions given in the table and 

analytical ways. 

 

14.1 Theoretical Data  

  

Tasks to compute integrals appear practically in all spheres of applied 

mathematics.  

The basics of the numerivcal integration methods consists in the fact that the 

interval [a, b] is split into sections on which the curve described by the sub-integral 

fucntion  f(x), is replaced by some other curve for which theintegral computing is 

done by rather simple formulae, and then all squares are summed.  

When interpolating polymomials replace the sub-integral function the so 

called quadrature formula is obtained.  The quadrature formulae for th 

einterpolation equidistance nodes are called the formulae of Newton- Cotes. 

Depending on the degree of the interpolating polinomial we distinguish the 

methods of rectangles, trapezium and quadratic trapezium, or Symson method.  

The main formulae and indices which charaterise these methods when the 

integration interval is divided into equal sections are given in the table 14.1, where 

the following symbols are accepted:  

 

n – the number of the layout sections, 

 

const
n

ab
xxh ii 


 1 - integration step  

 

                           ,n,...,,i),x(fy ii 210                                                 (14.1) 

 

).b(fy),a(fy,bx,ax nn  00  

 

The method mistake is detrmined by the value of the integral of the 

interpolation polynomial remainder term. In the formulae to evaluate the mistake 

Mi the maximum value of the i derivative
i

i

dx

)x(fd
  on the interval [a, b]. 

 



Table 14.1 Task for the Laboratory Work  №14 

 

Name of the 

method  

Interpolating 

polynomial 

degree  
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Mistake  
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When Simson method is applied the number of the layout sections is even 

(n=2k) and all the sections are identical. Under the irregular integration interval 

layout the rectangle and trapezium methods are applied. For them the numerical 

integration formulae are of the form:  
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According to the rectangle method,  
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According to the trapezium method  

To provide the required integration accurcay the algorithms with the step 

automated choiceare used. The integral value computing is done by one of the 

examined methods with the initial step h, and then these computations are 

repaetaed with the half-step
2

h
.    If it appears that   
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Where   - the integration permissible mistake  

The computing is stopped, if not the further  step split is done.  

The integral approximate value obtained by this method can be specified by 

the extrapolation  transition to the limit proposed by Richardson:  
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(zz ,                                        (14.5) 



 

                   1 – for the rectanle method , 

Where       k=     2 – for the trapezium method,  

                             3 –or the Sipson method . 

 

14.2 Task  

 

14.2.1  Table Function Integration  

 

Compute the integral from the table function given in the table 14.2. Odd 

variants use the trapezium method under the interval irregular layout of integration 

and the method of Simpson under the regular one. The even varinats use the 

rectangle method and that of trapezium in analogous cases.  

 

14.2.2 Integration of the Functions Given Analitically    

 

Compute theintended integral  


b

a

dx)x(fz  

For the function given in the table 14.2 on the intended interval [a,b] with 

the intended accuracy  ,using the step automated choice  method specified in the 

table   

 

14.3 Methodical Recommendations  

  

To have the result visual verification build the sub-integration function 

graph and place it on the line parallel to the abscissa axis on the level of   

.
ab

dx)x(f

y

b

a
ср





  

 

If the solution is correct the square limited by the sub-integral curve and  

lines х=а, x=b і  y=0, equals to the square of the rectangle limited by the line 

sections y=yсp , x=a, x=b, y=0.  

 

Tabel 14.2 Output Data for the Laboratory Work  №14  

Variants  Method  
 

f(x) a b Parametres  

1 2 3 4 5 6 7 

1 Rectangle 10
-5 

cosxsin

x

1
 

0 
 

  =0,182 

2 Sipmson  10
-3

 

3 Trapezium  10
-4 

xdxc

x
2222

2

cossin

cos


 

0 

2


 

c=0,953 



4 Rectangle  10
-2 

d=2,295 

5 Trapezium  10
-6 

xdc 22

1


 

 

0 1 c=3,18 

d=-1,37 
6 Simpson  10

-3
 

7 Rectangle  10
-2 

mxcosxcosm   
 

0 

2


 

m=3 

8 Trapezium  10
-4 

9 The same  10
-5 

33

5

xc

x


 

 

0 1 c=1,21 

10 Simpson  10
-3

 

11 Trapezium  10
-2 

xdxc cossin

1


 

0 

2


 

c=8,53 

d=0,524 
12 Rectangle  10

-4 

13 Simpson  10
-5

 

33

2

xc

x


 

 

0 1 c=0,732 

 

 

 

 

14 Trapezium  10
-3 

Continuation of the table  14.2 

1 2 3 4 5 6 7 

15 Rectangle  10
-4 

22 2

1

dxcosdcc 
 

 

0   c=3,76 

d=8,39 
16 Trapezium  10

-2 

17 Simpson  10
-6

 

21 )cx(

ex cx




 

0 1 c=4,18 

 
18 Trapezium  10

-3 

19 The same  10
-2 

22 xc

x


 

0 1 c=0,874 

20 Rectangle  10
-4 

21 Simpson  10
-5

 
3x

)rxln( 
 

1 2 22 cxr 

c=2 
22 Trapezium  10

-3 

23 Rectangle  10
-2 

xlnsin  1 5  

24 Simpson  10
-4

 

25 The same  10
-5 

xsinc1

1
 

 

0 

2


 

c=0,5 

26 Trapezium  

 

10
-3 
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HARMONIC ANALYSIS AND SYNTHESIS OF THE PERIODICAL FUNCTIONS  

 

Purpose of work: to learn to determine the periodical function harmonic composition.  

 

15.1 Theoretical Data  

 

The time function f(t) is called periodical if for it the condition  

                  ...,,,m),Tmt(f)t(f 321                                        (15.1) 

 

Where   Т   - period  

Is equitable.  

 

The periodic function harmonic analysis consists in determination  of the 

coefficients ak , bk of the Fourier series: 
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Where    
T

w
2

the first harmonic circular frequency;  

                  k – the harmonic serial number  

Being limited by some final number of harmonics m in the formula (15.2) 

the approximating harmonic polynomial Qm(t) is obtained : 
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The Fourier coefficients are determined by the expressions  
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Using the rectangle method for the numerical integration of the formulae 

(15.5) when the integration interval [0,T] is split into n equal sections we get:: 
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k=1,2,…,m, 

 

                                             ),t(fy ii                                                        (15.7) 

 

                                             ,titi                                                         (15.8) 

 

                                             .
n

T
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Under  

 

         n=2k                                                      (15.10) 

 

the function  Qm(t) becomes the trigonometric interpolator.  

Getting of the periodical function by summing up its harmonic components 

according to the formula (15.4).is called the harmonic synthesis 

 

15.2 Task  

 
Compute the coefficients of the interpolating trigonometric polynomial that approximate 

the table function given in the points                                           

   n,...,,,i,i
n

ti 210
2




  

When    .n 20  

Build the interpolating function graph and plot the output tabel function in the form of the 

grid.  

15.3 Methodical Recommendations  

 

For vizualisation the integrity of the points on the approximation function graph is to be 

5-10 times as much of the integrity of the points which split the period into the sections for 

numerical integration.   

Observe the influence of the number of the harmonics m under the given number of the 

layout sections on the approximation accuracy.. 

 

Таблиця 15.1 – Вихідні дані до лабораторної роботи №15 

 

Variant 

number  

 Function table values  

1 2 

1 1.00,1.803, 3.085,4.776,6.434,7.347,7.027,5.652,3.897,2.381, 1.347, 7.422, 

0.419, 0.256, 0.176, 0.142, 0.136, 0.155, 0.209, 0.324, 0.554 

2 7.38, 6.76, 5.22, 3.47, 2.07, 1.16, 0.64, 0.36, 0.23,  0.16, 0.13, 0.13, 0.16, 0.23, 

0.37, 0.64, 1.16, 2.08, 3.48, 5.22, 6.76 

3 -1.24, -1.17, -1.08, -0.96, -0.84, -0.79, -0.8, -0.9, -1.1, -1.21, -1.02, -1.28, -1.32, 

-1.34, -1.36, -1.37, -1.37, -1.36, -1.35, -1.33, -1.30 



4 -3.0, -3.58, -4.12, -4.56, -4.86, -4.99, -4.94, -4.73, -4.36, -3.86, -3.30, -2.7, -

2.13, -1.64, -1.26, -1.05, -1.00, -1.13, -1.43, -1.87, -2.43 

5 1.0,1.05, 90.6, 520.4, 1714.7, 2915.0, 2439.2, 1020.6,230.7, 32.17, 3.29, 0.3, 

0.03, 0.004, 0.001, 0.0003,0.0006, 0.002, 0.01, 0.09, 0.9 

6 2980.1, 2089.3, 742.4, 146.6, 18.6, 1.8, 0.16, 0.02, 0.003, 0.001, 

0.001,0.001,0.002,0.003, 0.018, 0.9, 1.22, 18.6, 146.6, 742.5, 2089.7 

7 1.0, 1.34, 1.75, 2.18, 2.53, 2.71, 2.65, 2.37, 1.97, 1.54, 1.16, 0.86, 0.64, 0.5, 

0.42, 0.37, 0.36, 0.39, 0.45, 0.56, 0.74 

8 2.71, 2.6, 2.28, 1.86, 1.44, 1.07, 0.8, 0.46, 0.42, 0.4, 0.37, 0.37, 0.4, 0.48, 0.6, 

0.8, 1.07, 1.44, 1.86, 2.28, 2.6 

9 -1.32,-1.28,-1.26,-1.24, -1.25, -1.25, -1.25, -1.26, -1.27, -1.29, -1.29, -1.33, -

1.34, -1.37, -1.37, -1.37, -1.37, -1.36, -1.36, -1.35, -1.34 

 

Continuation of the table  15.1 
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10 -4.0, -4.2, -4.5, -4.7, -4.9, -5.0, -4.9, -4.8, -4.6, -4.4, -4.1, -3.8, -3.5, -3.1, -3.0, -

3.0, -3.0, -3.1, -3.2, -3.4, -3.7 

11 1.0, 2.4, 5.4, 10.4, 16.3, 19.9, 18.6, 13.4, 7.7, 3.6, 1.6, 0.64, 0.27, 0.13, 0.07, 

0.05, 0.05, 0.06, 0.09, 0.18, 0.4 

12 20.0, 17.5, 11.9, 6.4, 2.9, 1.2, 0.5, 0.2, 0.1, 0.06, 0.05, 0.05, 0.06, 0.1, 0.5, 1.0, 

1.2, 2.9, 6.4, 11.9, 17.5 

13 -1.1, -0.8, -0.3, 0.3, 0.7, 0.8, 0.7, 0.5, 0.04, -0.6, -0.9, 1.1, -1.27, -1.32, -1.35,-

1.37, -1.37, -1.36, -1.34, -1.3, -1.2 

14 -2.0, -2.8, -3.7, -4.3, -4.7, -4.9, -4.9, -4.5, -4.1, -3.3, -2.4, -1.5, -0.6, -0.04, 0.6, 

0.02, 0.99, 0.79, 0.34, 0.3, -1.1 

15 1.1, 3.2, 9.5, 22.8, 41.4, 53.9, 49.4, 31.9, 15.2, 5.7, 1.8, 0.55, 0.17, 0.06, 0.03, 

0.02, 0.01, 0.02, 0.04, 0.1, 0.3 

16 -0.78, -1.22, -1.34, -1.39, -1.42, -1.43, -1.42, -1.41, -1.37, -1.3, -1.1, -0.1, 1.1, 

1.2, 1.33, 1.36, 1.37, 1.35, 1.3, 1.17, 0.65 

17 54.5, 45.7, 27.2, 12.1, 4.3, 1.3, 0.4, 0.13, 0.05, 0.03, 0.02, 0.02, 0.03, 0.05, 0.13, 

0.41, 1.3, 4.3, 12.1, 21.2, 45.7 

18 -0.78, 0.18, 0.89, 1.13, 1.21, 1.24, 1.23, 1.18, 1.04,0.63, -0.38, -1.01, -1.22, -1.3, 

-1.35, -1.36, -1.37, -1.36, -1.33, -1.27, -1.1 

19 -1.0, -2.1, 3.2, -4.1, -4.7, -4.9, -4.8, -4.4, -3.7, -2.7, -1.6, -0.4, 0.7, 1.7, 2.4, 2.9, 

3.0, 2.7, 2.1, 1.2, 0.2 

20 1.0 , 4.36, 16.7, 49.8, 105. 0, 146. 3, 130. 9, 75.9, 30.0,8.75, 2.1, 0.47, 0.11, 

0.03, 0.01, 0.007, 0.006, 0.009, 0.02, 0.05, 0.2 

21 148.4, 118.8, 62.6, 25.5, 6.21, 1.45, 0.33, 0.08, 0.02,0.01, 0.007,0.007, 0.01, 

0.02, 0.08, 0.32, 1.45, 6.2, 22.6, 62.2, 119.0 

22 0.0, 0.97, 1.23, 1.32, 1.36, 1.37, 1.36, 1.34, 1.28, 1.130.64, -0.64, -1.13, -1.28, -

1.34, -1.37, -1.36, -1.32, -1.23, -0.9, -0.2 



23 -0.0001, -1.47, -2.8, -3.9, -4.65, -4.98, -4.87, -4.33, -3.4, -2.16, -0.74, 0.74, 2.17, 

3.14, 4.33, 4.87, 4.98, 4.65, 3.9, 2.8, 1.4 

24 1.0,5.8, 29.3, 108.9, 266.4, 396.7, 347.1, 180.5, 59.2, 13.5, 2.4, 0.4, 0.07, 0.01, 

0.005, 0.003, 0.002, 0.004, 0.009, 0.03, 0.1 

25 403.4, 309.0, 142.2, 42.1, 8.9, 1.56, 0.26, 0.05, 0.01, 0.0044, 0.0026, 0.0026, 

0.0044,0.01, 0.05, 0.263, 1.56, 8.95, 42.1, 142.2, 309.9 

26  

 

 

0.78, 1.22, 1.34, 1.39, 1.42, 1.43, 1.42, 1.41, 1.37, 1.3, 1.1, 0.1, -1.1, -1.2, -1.33, 

-1.36, -1.37, -1.35, -1.3, 1.17, -0.65 

27 1.0, -0.77, -2.3, -3.6, -4.6, -4.9, -4.8, -4.1, -3.1, -1.6, 0.1, 1.9, 3.6, 5.1, 6.2, 6.84, 

6.98, 6.58, 5.69, 4.4 , 2.7 

28 1.0 , 7.8, 51.5, 238.1, 675.9, 1075.4, 620.1, 429.3, 110.8, 20.8, 2.83, 0.35, 0.04, 

0.01, 0.002, 0.001, 0.001, 0.001,0.004, 0.02, 0.12 

Continuation of the table  15.1 
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29 1.10, 1.32, 1.40, 1.43, 1.45, 1.46, 1.46, 1.44, 1.42, 1.37, 1.25, 0.76, -0.8, -1.22, -

1.33, -1.36, -1.37, -1.35, -1.29, -1.1, -0.1 

30 2.0 , -0.06, -1.9, -3.4, -4.9, -4.8, 4.0, -2.7, -1.1, 0.95, 3.0,  5.0, 6.7, 8.1, 8.8, 8.9, 

8.5, 7.47, 5.94, 4.06 

 
Laboratory Work  16 

 

SEARCH OF THE FUNCTION EXPTREME VALUES BY THE GOLDEN SECTION 

METHOD  
 

Purpose of work: to learn to determine maximum and minimum values of the function on 

the given interval  

 

16.1 Theoretical Information   

 
The search of the extremum of function of one variable is not only of self-contained 

interest . It is an important element of the minimization of functions of several variables when 

different optimization tasks arу solved. 

The below given method allows to find the point of the extremum of the function f(x)  on 

the interval [a,b]. The section [a,b] should have one maximum or minimum of the function under 

investigation. 

The division of the segment into two parts in such a way that the ratio of the 

length of all segment to the length of the biggest part equals to the ratio of the 

biggest part to the smallest one is called the golden section of the segment.  

It’s not difficult to prove that the golden section of the segment [a, b] is 

fulfilled by two points placed symmtrically:  
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Besides, the point x1  in its turn makes the goldens ection of the segment [a, 

x2], and the point x2 –of the segment  [x1, b].  

According to the above-mentioned the search of the minimum function 

value on the given interval [a, b] can be done as follows:  

- divide the segment  [a, b] by the points  x1 and і x2 according to the golden 

section rule ; 

-compute  the minimized function ,  f(x) value in the points   x1 і  x2; 

- with  f(x1)>f(x2) change the left limit of the interval з a=x1, if not –the right 

one b=x2;  

- repeat the process form the very beginning taking into account that one of 

the points of the golden section is already known;  

- go on with the interations until the interval of uncertainty [a, b] is less than 

the given mistake  ;  

- the minimum point is clarified by halving of the segment [a, b] when the 

iteration is finished:  

                                                 .
ba

xmin
2


  

 

The function maximum is found in the analogous way.  

 

16.2 Task  

 

Find the minimum or maximum value of the function on the interval [a, b] 

with the accuracy  .The output data is given in the table 16.1. Build the function 

grapgh and find the extremum point on it.    

 

 Table  16.1 – Task for the Laboratory Work №16 

№ 
 

f(x) a b 
 

Extremum type  

 

1 2 3 4 5 6 

1 xsine xcos 22   4 5 

 

10
-5 Minimum 

2 ),xsin,(arctg 3182   0 2 

 

10
-4 

Maximum  

3 x,ex 2502 4   
 

-1 2 

 

10
-3 Minimum  

4 x,),xsin(, 6705052 2   

 

1 2  10
-5

 Maximum  



5 xarctg,x 6214   

 

-2 0  10
-4

 Minimum  

6 xex 22   
 

0 2  10
-3

 Maximum  

7 ),xsin,(arctg 3182   

 

-2 0  10
-4

 Minimum  

8 xsinexsin 23   0 1  10
-5

 Maximum  

9 
228 xe

x

  
-2 0  10

-3
 Minimum  

Continuation of the table 16.1 

1 2 3 4 5 6 

10 xcosexsin 22   -1 1  10
-3

 Maximum  

11 41051 xxarctg,   0 2  10
-3

 Minimum  

12 xsine5  
 

4
  4

3  12 
-6

 Maximum  

13 80
81

,xx e,


  1 3  10
-4

 Minimum  

14 )xcosxsin(   1 2  10
-5

 Maximum  

15 xsine xsin 32   -1 0  10
-4

 

 

Minimum  

16 2960850  x,x,ln  0,1 2  10
-3

 Maximum  

17 x,xtg 3278   

 

0,1 0,18  10
-6

 Minimum  

 

18 x,)x,sin(, 822536   

 

-0,1 0,6  10
-5

 Maximum  

19 x,),xsin(, 6705052 2   -1 1  10
-4

 Minimum  

20 410280
2

43 x,),
x

cos(,   
-1 2  10

-3
 Maximum  

21 

42
2

xx
lnxcos   

1,6 3  10
-4

 Minimum  

22 )x(tgx, 32219   0,2 0,5  10
-6 

 

Maximum  

 

23 ),x,sin(,x, 180201220 2 

 

-5 0  10
-3 

 

Minimum  

24 

4
2

2

x
xcos

x
ln   

0,5 1,6  10
-4

 Maximum  

25 512085 1 ,)x,ln(x,    0,1 1  10
-5

 Minimum  
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